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ABSTRACT: This article describes the application of multivariate statistical process
control techniques to a series of mid-infrared spectra collected online from a styrene/
2-ethylhexyl acrylate emulsion copolymerization process. Principal component analysis
of the mid-infrared spectral data indicated that in situ monitoring of the complex
copolymerization process was feasible in the spectral region of interest. It was also
observed that projection to latent structures or partial least squares (PLS) could be
used for the effective indirect online prediction of individual monomer conversions and
copolymer compositions over a substantial range of process operating conditions. A
combination of the developed PLS methodology with a mid-infrared attenuated total
reflection probe proved to be an effective tool for the efficient online characterization of
polymer quality, thereby overcoming the lack of robust online conversion and compo-
sition measuring devices. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1776–1787,
2001

Key words: mid-infrared spectroscopy; emulsion copolymerization; principal compo-
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INTRODUCTION

Efficient polymer-quality control requires correct
information on the state and behavior of the po-
lymerization process; therefore, the availability of
online measurements is essential. Despite ongo-
ing developments in the field of hardware sensors
for the online monitoring of polymerization pro-
cesses, there is a remarkable lack of robust,
highly sensitive and accurate sensing devices for
the online monitoring of polymerization pro-
cesses. The viscous nature of polymerization sys-

tems, the presence of several phases and species
in polymerization media, and the complexity of
polymer chain architecture are the main factors
contributing to the limited number of applications
of real-time analytical monitoring devices for the
online characterization of polymer quality. In ad-
dition, extreme difficulties arise when we attempt
to infer polymer quality from signals generated by
various hardware sensors because of the complex-
ity of the data produced.

Several remote fiber-optic probes suitable for
collecting infrared (IR) spectra have been re-
ported in the literature.1 Near-infrared (NIR)
spectroscopy received some early attention for the
development of online analyzers because it does
not require complicated hardware or sampling
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techniques. However, it suffers from nonspecific-
ity of absorption peaks and possible nonlineari-
ties associated with light scattering in heteroge-
neous systems. Research in the mid-infrared
(MIR) spectral region has been sparse, although it
contains a wealth of qualitative and quantitative
information because MIR transmitting optical fi-
bers, such as chalcogenide and metal halide opti-
cal fibers, have been developed only very recently
and are not yet available in lengths longer than
approximately a few meters. Finally, fiber-optic
Raman sensors have been used because they re-
quire minimal alignment of samples with respect
to the input laser beam or collection optics.

In an attempt to overcome some of the prob-
lems presented by the lack of appropriate online
instrumentation, software sensors have been pro-
posed to determine difficult-to-measure and un-
measurable process–quality variables. Multivar-
iate statistical data analysis methods and, in
some cases, projection to latent structures or par-
tial least squares (PLS) techniques are considered
state of the art. Most of the methods currently
used either do not make any attempt to extract
the underlying latent (information-carrying) vari-
ables from the data or at best use linear PLS
approaches. However, there are technical limita-
tions to these approaches, especially if the corre-
lations being evaluated are nonlinear. The devel-
opment of algorithms capable of accurately and
reliably characterizing polymer-quality-associ-
ated data that can be integrated into the sensor–
analyzer system itself is an important, and as yet
unsatisfied, requirement.

A number of multivariate statistical projection
methods have been presented in the literature,
including principal component analysis (PCA)
and PLS.2–7 These methods are particularly suit-
able for analyzing large sets of correlated data.
The information contained within the process
and/or quality variables is summarized in terms
of a reduced set of latent variables by the projec-
tion of the information down onto low-dimen-
sional subspaces. PCA is used for explaining the
variability in a single data block. It calculates
latent vectors that are uncorrelated, called prin-
cipal components (PCs), that describe the direc-
tions of greatest variability in the data set. Con-
ceptually, PLS is similar to PCA except that it
simultaneously reduces the dimensions of both
process (X) and quality (Y) variable spaces to find
the latent vectors for the X space that are most
predictive of the Y space.8 The combination of
these projection methods with multivariate con-

trol charts underpins multivariate statistical pro-
cess control (MSPC) methods.8–10

Several applications of multivariate statistical
projection methods to the quantitative analysis of
IR spectroscopic data have been reported in the
literature.11–16 A comparison of various ap-
proaches to IR multicomponent quantitative
analysis, including K-matrix, multivariate least
squares, PC regression, and PLS, was presented
by Fuller et al.11 Hazel et al.12 described the ap-
plication of multivariate analysis techniques, in-
cluding PCA and PLS, to unreferenced MIR spec-
tral data of hydrocarbon-contaminated wet soils.
An evaluation of nonlinear model building tech-
niques for the determination of glucose in biolog-
ical matrices by NIR spectroscopy was presented
by Ding et al.13 Moreover, Chatzi et al.14 showed
that a novel and versatile attenuated total reflec-
tion (ATR) IR probe with the recently developed
chalcogenide fibers as MIR transparent light
guides was especially suitable for obtaining qual-
ity spectra in aqueous media and for monitoring
characteristic monomer and polymer vibrations
in styrene (STY)/2-ethylhexyl acrylate (2-EHA)
emulsion polymerizations at the azeotropic com-
position.

This article describes the successful implemen-
tation of an MIR spectroscopic sensor in combina-
tion with PCA and PLS for the emulsion copoly-
merization process of STY/2-EHA. The dimen-
sionality reduction aspects of PCA are exploited
to develop MSPC schemes for monitoring the op-
erating performance of the process. PLS is used to
obtain online estimates of individual monomer
conversions and copolymer composition.

EXPERIMENTAL

Several batch emulsion copolymerization experi-
ments of 2-EHA and STY were carried out at two
different initial monomer compositions (30 and 70
wt % STY), two polymerization temperatures (60
and 70°C), and three levels of emulsifier (0.0097,
0.0155, and 0.0176 mol/L) and initiator concen-
trations (0.0095, 0.013, and 0.015 mol/L). A pre-
weighed amount of emulsifier dissolved in water
was added into a 500-mL, water-jacketed glass
reactor and was followed by the addition of a
predetermined amount of STY and, subsequently,
2-EHA. The reactor was purged with nitrogen
while the emulsion was being heated to the final
polymerization temperature. When the tempera-
ture reached its prespecified level, the initiator
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aqueous solution was added to the reaction mix-
ture. The polymerization temperature was kept
constant with the aid of a controlled-temperature
recirculating bath.

An MIR optical-fiber probe14 (Graseby Specac,
Inc., Kent, UK) having a 19 mm head diameter
and a 2-reflection 45° ZnSe crystal, was immersed
into the reaction mixture immediately after
monomer loading. The MIR probe was equipped
with a set of 1.5-m chalcogenide optical fibers,
which were especially suitable for use in the MIR
region (i.e., 4500–900 cm21), and was connected
to a Perkin Elmer 2000 Fourier transform infra-
red (FTIR) spectrophotometer purged with nitro-
gen and equipped with a wide-band mercury cad-
mium telluride detector. The frequencies of the
spectrometer were calibrated to an accuracy bet-
ter than 0.15 cm21, and the signal to noise (S/N)
ratio was larger than 4000:1. ATR spectra were
collected through the probe during polymeriza-
tion from 4000 to 900 cm21. Two hundred scans
recorded at 15-min intervals, starting from the
time of the addition of the initiator (t 5 0 min),
were signal-averaged at a resolution of 4 cm21.
The spectra were ratioed against a background
recorded in the open air before the probe was
immersed in the reactor. In addition, the total
monomer conversion was measured offline at dis-
crete time intervals by gravimetry and thermo-
gravimetric analysis, and the copolymer composi-
tion was obtained through offline UV and IR mea-
surements.17 The standard deviations of the total
monomer conversion and copolymer composition
estimates were 60.03 and 60.02, respectively.
The corresponding individual degrees of conver-
sion for STY and 2-EHA were deduced on the
basis of these direct experimental measurements.

MULTIVARIATE PROJECTION TECHNIQUES

The basic concepts and algorithms of PCA and
PLS have been thoroughly presented in the ch-
emometrics literature.2–7 Their use in the multi-
variate monitoring of process operating perfor-
mance has also been treated in recent articles.8–10

Therefore, in this section we provide only a basic
overview of the methods and their application to
process and quality monitoring.

Consider a situation in which we have mea-
surements on m process variables and k quality
variables taken at n different times. These data
can be arranged into an (n 3 m) process data
matrix X and an (n 3 k) quality data matrix Y. If

we are interested in understanding and monitor-
ing the variability only in the process variables
(X), we can perform PCA on X. If we are more
interested in studying and monitoring the varia-
tions in the process variables that are most influ-
ential on the quality and productivity variables
(Y), we should perform a PLS analysis with both
Y and X. Both these procedures are based on
projecting the information in the high-dimen-
sional data spaces (X, Y) down onto low-dimen-
sional spaces defined by a small number of latent
variables (t1, t2, …, tA). These new latent vari-
ables summarize all the important information
contained in the original data sets.

In PCA, the objective is to compress the vari-
ance of X into a few uncorrelated latent variables
(PCs). Accordingly, the mean-centered X matrix
is decomposed as follows:

X 5 O
a51

A

tapa
T 1 E (1)

The calculation of the PCs is based on the nonlin-
ear iterative partial least squares (NIPALS) algo-
rithm.5 The latent score vectors ta are computed
sequentially from the input data for each new
dimension (a 5 1, 2, …, A) such that the linear
combination of the process variables (xj; j 5 1, 2,
…, m) defined by the latent variable ta 5 pa

Tx
maximizes the variance of X that is explained at
each dimension. The vector pa is the loading vec-
tor whose elements, pja, express the contribution
of each variable, xj, toward defining the new PC,
ta. E is the matrix of residuals after the fitting of
A PCs (e.g., the deviations of original data from
the A-dimensional model). With highly correlated
variables, the first few PCs (usually two or three)
account for most of the variability present in the
data. The remaining components are of limited
significance and are typically attributed to noise
inherent in the collected data. Hence, for moni-
toring it is often sufficient to consider only the
first few dimensions (a 5 1, 2) in eq. (1).

PLS is a multivariate regression method whose
objective is to establish a predictive relationship
between two data sets, X and Y, and reduce prob-
lem dimensionality by compressing the covari-
ance between X and Y into a low-dimensional
subspace. The mean-centered X matrix is decom-
posed as shown in eq. (1). Similarly, the decom-
position of the mean-centered Y matrix is repre-
sented as
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Y 5 O
a51

A

taqa
T 1 F (2)

The calculation of the PLS components is based
on the NIPALS PLS algorithm.5 The latent score
vectors ta are computed sequentially for each PLS
dimension (a 5 1, 2, …, A) such that the linear
combination of the x’s defined by the latent vari-
able ta 5 wa

Tx and the linear combination of the
y’s defined by the latent variable ua 5 qa

Ty max-
imize the covariance between X and Y that is
explained at each dimension. The vectors wa and
qa are weight vectors whose elements, wja and
qka, respectively, express the contribution of each
variable, xj and yk, respectively, toward defining
the new latent variables, ta and ua. E and F are
the residual matrices of X and Y, respectively,
after the fitting of A latent variables.

The number of latent vectors (A) retained in
the model is usually chosen by crossvalidation
methods.18 This involves holding back some of the
observations, performing a PLS analysis, and
computing the prediction error sum of squares
(PRESS) for those observations left out. This is
repeated until every observation has been left out
once. The optimal order of the model (A) is taken
as that minimizing the total PRESS. This proce-
dure eliminates the overfitting that often occurs
when models are fitted to correlated data and
leads to increased prediction errors.

After a PCA or PLS model is built, process
monitoring can be performed in the reduced la-
tent variable space, instead of the original X block
variables being used, by the plotting of the pro-
jected scores in the selected number of dimen-
sions (e.g., individual scores plots, joint ti–tj plots,
or plots of Hotelling’s T-square statistic) and the
residuals of the projection. Quadratic residual
time evolution plots, such as a squared prediction
error (SPE) plot, can be used for monitoring the
deviations of original data from the MSPC model.
The SPE of the X block is calculated as follows:

SPEx,i 5 O
j51

m

~xij 2 x̂ij!
2 5 O

j51

m

eij
2 (3)

where x̂ij is the value of xij predicted by the MSPC
model. The state of the process at each time in-
terval is statistically determined on the basis of
appropriate control limits that define the range of
acceptable values for the scores (t) and residuals

(e). Two types of control limits are usually de-
fined: a warning limit corresponding to a 5% sig-
nificance level and an action limit corresponding
to a 1% significance level. A shift in the score
plane outside the control region indicates an in-
crease in the magnitude of process variation that
can still be explained by the MSPC model. How-
ever, when an increase in SPE beyond control
limits is observed, a new event not included in the
reference set has occurred, and the model is no
longer valid.9

DATA ANALYSIS AND RESULTS

Data Set Characteristics

The available historical database consisted of a
large number of online collected IR spectra (250
samples) and individual STY and 2-EHA conver-
sion and copolymer composition values (204 sam-
ples) measured offline. The available data were
representative of the process under investigation
because they spanned every type of variability
that had to be modeled. A mathematical model
developed in the laboratory for the simulation of
STY/2-EHA batch emulsion copolymerization19

was employed to enrich the available database of
offline measurements with quality data corre-
sponding to intermediate time intervals.

A typical set of transmittance spectra from the
historical database is presented in Figure 1. The
spectral data used in the analysis consisted of IR
transmittance measurements at 401 distinct
wavelengths in the range of 1800–1400 cm21,
which was shown to be adequate for the quanti-
fication of all types of structural units present in
the system. Seven major spectral absorbances can
be identified in Figure 1, with their maxima ob-
served approximately at wavelengths of 1727,
1630, 1600, 1495, 1465, 1452, and 1407 cm21. In
the 1550–1710-cm21 region, the spectra of the
emulsion have monomer and copolymer bands su-
perimposed on the basic contours of the water
spectrum.14 However, manual subtraction of the
water spectrum was not considered necessary on
the basis of the performance of the statistical
models developed.

The underlying peaks at 1630 and 1600 cm21

correspond to the skeletal breathing vibration of
the aromatic ring of the STY monomer and the
corresponding structural unit in the copolymer,
respectively. The peak at 1495 cm21 is character-
istic of the nature and position of the substituents
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of the STY aromatic ring, and its frequency is not
very much affected by the polymerization reac-
tion. The peaks at 1465 and 1452 cm21 represent
another skeletal ring breathing vibration of the
STY monomer and its structural unit in the co-
polymer. Finally, the peaks at 1727 and 1407
cm21 are characteristic of 2-EHA; more specifi-
cally, the position and shape of the 1727-cm21

carbonyl stretching band is known to depend on
copolymer composition,17 whereas the 1407-cm21

peak can be mainly attributed to the monomeric
2-EHA.

Figure 2 shows individual monomer conversion
data for STY from a number of polymerization
experiments carried out with initial STY weight
fractions (WSt) of 0.3 and 0.7 under different ex-
perimental conditions (e.g., temperature, initiator
concentration, and emulsifier concentration). WSt
is defined as follows:

WSt 5 F STY mass
STY mass 1 2-EHA massG (4)

The STY conversion values for different experi-
mental conditions follow a similar pattern, indi-
cating that a global statistical model could be

developed for the online prediction of STY mono-
mer conversion. However, for a WSt value of 0.3
(see Fig. 3), the copolymer composition decreases
with polymerization time, whereas it remains
constant for a WSt value of 0.7 because of the
azeotropic polymerization conditions.

To verify that all the samples of the historical
database represent normal operation, we initially
applied PCA and PLS to the whole data set. An
investigation of the respective control charts (i.e.,
t and SPE plots) in the reduced latent plane did
not reveal the presence of abnormal samples. A
subset of the available historical data (84 samples
for PCA and 67 samples for PLS, respectively)
were selected to form a secondary data set upon
which the developed models were validated. The
selection was performed in such a way that the
selected sample sets spanned the whole range of
conversion. The remaining samples formed the
reference data sets upon which the two models
were built.

PCA Modeling and Validation

The X data matrix of reference spectra (166
3 401) was mean-centered at each spectral fre-
quency prior to PCA modeling by the subtraction

Figure 1 Indicative MIR spectra collected during STY/2-EHA emulsion copolymer-
ization experiments.
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of the average spectrum from each individual
spectrum. This step is necessary for the effective
application of the PCA and PLS techniques.5

The amount of spectral variability captured by
each PC is listed in Table I for the first five latent
dimensions. The first PC accounts for 80% of the
variability in X, indicating that a strong linear
correlation exists between the spectral frequen-
cies. Two more PCs were considered significant on
the basis of a visual inspection of their respective
loadings, which account for 12 and 6.5% of the
variance in X, respectively. The remaining com-
ponents contribute very little variance to the
model (i.e., ,1%) and are typically attributed to
noise. This was verified by a number of criteria,
such as Kaiser’s rule2,3 (i.e., the normalized eig-
envalues of the retained PCs should be larger
than the empirical limit of 1.0) and the second
derivative of the imbedded error function pro-
posed by Elbergali et al.20 As shown in Table I,
the second derivative exhibited a first maximum
in the third PC, indicating that the amount of
experimental noise mixed into the three-latent-
factor scheme is minimal.

Figure 4 depicts the X-block loadings of the
three PCs. These express the contribution of each

individual variable (i.e., wavelength) toward de-
fining each PC. By identifying those spectral re-
gions that contribute the most to each PC, we can
give a physical interpretation to the PCs; this
information could be useful for selecting the di-
mensionality of the PCA model (i.e., identification
of uninformative PCs), for attaining a better un-
derstanding of the underlying process phenomena
and, consequently, for interpreting process faults
or disturbances.

The first PC (see Fig. 4) is dominated by two
positive loadings at 1727 and 1407 cm21, both
ascribed to the monomeric 2-EHA, and by a
strong negative contribution in the range of
1710–1500 cm21, which is mainly attributed to
the water absorption. Because most of the spec-
tral variability is accounted for by the first PC
(i.e., 80%), the main source of disturbances in the
copolymerization process can be related to the
2-EHA monomer.

Three areas dominate the second PC. The first
one is in the area of the 1730-cm21 band and is
characterized by the strong contribution of a dou-
blet attributed to the carbonyl stretching absor-
bances of the monomeric and polymeric 2-EHA at
approximately 1720 and 1735 cm21, respectively.

Figure 2 Time evolution of STY monomer conversion under different STY/2-EHA
experimental conditions. [S] and [I] are the concentrations (mol/L) of the emulsifier and
initiator, respectively.
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The second area consists of a positive peak at
1465 cm21 and two negative peaks at 1495 and
1452 cm21, which correspond to the skeletal ring
breathing vibration of the STY aromatic ring. Fi-
nally, the third area consists of a strong positive
loading at 1407 cm21 attributed to the monomeric
2-EHA. Hence, the loadings of the second PC
show features characteristic of all species present
in the reaction mixture and are, therefore, diffi-
cult to interpret. However, the scores in the sec-
ond PC are grouped into two clusters according to

the initial monomer composition, as described
later (see Fig. 5). Consequently, on the basis of
the previous results, the second PC is very likely
to describe differences in the initial monomer
mixture composition and in the copolymer compo-
sition.

Similar results arise for the third PC. The third
PC is characterized by a strong positive loading at
1735 cm21 attributed to the reacted 2-EHA and a
strong negative contribution at 1407 cm21, which
is characteristic of the unreacted 2-EHA mono-
mer. In addition, there exists a strong positive
contribution of the peaks at 1495 and 1452 cm21,
which are characteristic of the STY structural
unit in the copolymer. The scores in the third PC
decrease with polymerization time. Further in-
vestigation of the individual variable contribu-
tions to the observed decrease indicated that it
could be mainly attributed to the peaks at 1735
and 1452 cm21, and so the third PC is very likely
to correspond to the extent of copolymerization.

Figure 5 illustrates the joint t1–t2 plot of the
first two PCs of the PCA model. In this plot, each
spectrum is plotted as a point in the low-dimen-
sional PC space. Black circles represent reference

Figure 3 Time evolution of copolymer composition for different emulsifier ([S]) and
initiator ([I]) concentrations (mol/L) and a WSt value of 0.3.

Table I Sum of Squares (SSX) and Cumulative
SSX Explained by the PCA Model and
Calculated Values of the Second Derivative of
the Imbedded Error [SD(IE)] Function20

Principal
Component

SSX
(%)

Cumulative
SSX (%) SD(IE)

1 80.1 80.1 —
2 12.1 92.2 20.26
3 6.6 98.8 0.17
4 0.8 99.5 0.09
5 0.2 99.7 20.04
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Figure 4 Loadings of the three PCs of the PCA model.

Figure 5 Joint t1–t2 plot of the first two PCs of the PCA model. The straight and
dotted lines correspond to significance levels of 1 and 5%, respectively.
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data, and white circles represent test data. The
straight and dotted lines correspond to signifi-
cance levels of 1 and 5%, respectively. These
points are grouped according to WSt into two main
clusters. More specifically, points that have posi-
tive t2 values correspond to spectra with WSt

equal to 0.7; points that have negative t2 values
correspond to spectra with WSt equal to 0.3. How-
ever, a third cluster of points with high positive t1

values and small absolute t2 values can be ob-
served. These points refer to IR spectra charac-
terized by strong water absorption, observed at
the early stage of polymerization. As shown in
Figure 6, these points have a high SPE, and some
of them slightly exceed the 1% control limit. How-
ever, because the water contribution in the IR
spectra was variable, these samples were consid-
ered to provide extreme but valuable information;
therefore, they were not removed from the refer-
ence database.

From the aforementioned PCA analysis, one
can conclude that a global three-dimensional PCA
model can adequately describe the normal opera-
tion of the STY/2-EHA copolymerization process.

PLS Modeling and Validation

Subsequently, a PLS model was developed that
was based on reference X-block spectra (137
3 401) and their respective Y-block quality values
(137 3 3) for the prediction of individual STY and
2-EHA conversions and copolymer composition
during polymerization. Before PLS analysis, both
blocks were mean-centered. The three Y-block
variables were further scaled to unit variance so

Table II Percentage Cumulative Sum of
Squares Explained by the PLS Model and
Calculated PRESS Based on Cross-Validation18

PLS
Dimension X Block Y Block PRESS

1 61.3 37.7 258.25
2 88.2 76.4 97.66
3 97.9 87.4 51.88
5 99.3 92.1 33.83

10 100.0 95.7 18.53
14 100.0 97.4 11.19
15 100.0 97.8 13.05

Figure 6 Quadratic X-block residuals (SPEx) of the reference and test data based on
a three-dimensional PCA model. The straight and dotted lines correspond to signifi-
cance levels of 1 and 5%, respectively.
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that they were of equal importance to the projec-
tion.

The percentage of the cumulative X- and Y-
block variability against the number of PLS com-
ponents is listed in Table II. Most of the variabil-
ity in X (98%) and Y (87.5%) is accounted for by
the first three PLS components. On the basis of
the crossvalidation technique,18 the optimum
number of latent variables to be retained in the
model was identified. Crossvalidation indicated
that a total of 14 latent variables should be used
for optimal predictive ability (i.e., minimum
PRESS), as shown in Table II. The crossvalidated
root-mean-square error between predicted and
observed Y values was 6% for STY conversion,
5.4% for 2-EHA conversion, and 1.3% for copoly-
mer composition.

Figure 7 shows the predicted and observed val-
ues of STY conversion for each test sample. Black
points represent STY conversions obtained at a
WSt value of 0.7; white points correspond to a WSt
value of 0.3. The predicted values of individual
monomer conversions are in close agreement with
the experimental measurements. Copolymer com-
position predictions obtained from the global PLS
model and a local PLS model developed on the
basis of a WSt value of 0.3 are presented in Figure
8. Although the local PLS model outperforms the
global PLS model, the latter satisfactorily pre-

dicts (e.g., based on the experimental error of
offline copolymer measurements) the copolymer
composition, which means that the development
of a different PLS model for each WSt value is not
necessary. Very good agreement was also ob-
tained between these results and the offline FTIR
and UV composition measurements.17

CONCLUSIONS

MSPC techniques, including PCA and PLS, were
applied to a series of MIR spectra collected online
from an STY/2-EHA emulsion copolymerization
process. PCA of the MIR spectral data indicated
that in situ monitoring of the process under study
was feasible in the spectral region of interest. A
global three-dimensional PCA model adequately
described the normal operation of the STY/2-EHA
copolymerization process. In addition, PLS was
used for the effective indirect online prediction of
individual monomer conversions and copolymer
composition over a substantial range of process
operating conditions. A global PLS model satis-
factorily predicted copolymer composition over a
wide range of experimental conditions; therefore,
the development of a different PLS model for each
WSt value was not considered necessary. The

Figure 7 Predicted versus observed STY conversions (XSt) for test samples based on
the PLS model.
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overall performance of the PLS model leads us to
the conclusion that the developed PLS methodol-
ogy, in combination with the MIR ATR probe, has
the potential to serve as an effective online poly-
mer-quality monitoring tool. From the data pre-
sented, it is clear that the application of MSPC
techniques is important for the efficient online
characterization of polymer quality hindered at
present by the lack of robust, highly sensitive and
accurate sensing devices.

NOMENCLATURE

a index for latent dimensions
I index for observations (rows of X and Y)
j index for process variables (columns of

X)
k index for quality variables (columns of

Y)
n number of observations
m number of process variables
k number of quality variables
A number of latent dimensions retained in

the MSPC model
xj X variable
yk Y variable
xij value of X variable j for observation I

x̂ij value of xij predicted by the PCA/PLS
model

eij residual of xij in PCA/PLS
ta latent variable of the X space
ua latent variable of the Y space
pja loading for X variable j in latent dimen-

sion a calculated by PCA or PLS
qka loading for Y variable k in PLS dimen-

sion a
wja weight for X variable j in PLS dimension

a
SPEx,i squared prediction error calculated on X

for observation i
PRESS prediction error sum of squares
WSt initial styrene weight fraction
FSt molar fraction of the styrene units in the

copolymer
[S] initial concentration of emulsifier

(mol/L)
[I] initial concentration of initiator (mol/L)
T polymerization temperature (°C)
STY styrene
2-EHA 2-ethylhexyl acrylate
x (m 3 1) vector of process variables rep-

resenting one observation
y (k 3 1) vector of quality variables repre-

senting one observation

Figure 8 Predicted copolymer compositions versus observed copolymer compositions
(FSt) for test samples corresponding to a WSt value of 0.3. Global and local PLS models
were used; the local model was based only on data corresponding to a WSt value of 0.3.
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ta (n 3 1) score vector for X in latent di-
mension a calculated by PCA or PLS

pa (m 3 1) loading vector for X in latent
dimension a calculated by PCA or
PLS

qa (k 3 1) loading vector for Y in PLS di-
mension a

wa (m 3 1) vector of weights for X variables
in PLS dimension a

X (n 3 m) matrix of process data
Y (n 3 k) matrix of quality data
E residual matrix for X in PCA or PLS
F residual matrix for Y in PLS
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